u-Channel DVCS at EIC

Wenliang 'Bill' Li (SBU) @ 2022RHIC & AGS Annual Users' Meeting 07/June/2022

Talk Objective

GPD vs TDA, and what we could obtain from the study

- JLab setup vs EIC
 - Why EIC could perform this measurement "naturally"

Plan to complete the study

Gifted Backward-angle Observables

- Fpi-2 (E01-004) 2003
 - Spokesperson: Garth Huber, Henk Blok
 - Standard HMS and SOS (e) configuration
 - Electric form factor of charged π through exclusive π production
- Primary reaction for Fpi-2
 - \circ H(e, e' π^+)n
- In addition, the experiment fortuitously received
 - p(e,e' p)ω
- Kinematics coverage
 - $_{\circ}$ W= 2.21 GeV, Q²=1.6 and 2.45 GeV²
 - $_{\circ}$ Two ϵ settings for each Q^2

t-Channel π^{+} vs u-Channel ω Production

Primary reaction for Fpi-2

- $H(e, e' \pi^+)n$
- n (940 MeV)
- π^{+} (140 MeV)

Unexpected reaction:

- $H(e,e'p)\omega$
- p (940 MeV)
- ω (783 MeV)

Mark Strikman & Christian Weiss: A proton being knocked out of a proton process

Two Key Discoveries from Fpi-2 ω Analysis

Discovery 1: Unexpected large *u*-Channel peak

Forward ω electroproduction from CLAS 6 (2004)

Backward angle ω electroproduction (2017)

Probing the u-channel observables

Dave Mack's opinion to gauge the level of interest

0.02

0.04

- Is there a u-channel peak for other processes?
 - Answer: Yes
 - Evidences below + GlueX u-channel meson productions

 (not allowed to show)
- We can't enter EIC era without systematically study u-channel interactions! (Will expand on this)

Generalized Parton Distribution

- Proton structure is divided into Hard and Soft structures:
 - Hard structure is calculable by perturbative methods
 - o Framework uses Hard structure information to extrapolate to the Soft structure
- Condition for Factorization Scheme:
 - At sufficiently large momentum transfer
 - Produced meson fragments scatter to extreme forward.
 - Framework ignores the structure information from backward-angle interactions
- Question: missing the description for backward structure of proton?

GPD, SPD and TDA (Hard Structure)

Complete description of Nucleon

Description to the unseen side of proton

- GPD: It is extracted predominantly based in the forward angle observables.
- TDA: meson-nucleon Transition Distribution Amplitude (TDA) only accessible through backward (u-channel) meson production.

GPD vs TDA Fact sheet 1

- Factorization: $Q^2 \rightarrow large, -t \rightarrow small$
- Systematically study forward DVCS & DVMP
- Formalism: four compact structures

$$\int_{-1}^{1} dx H_q(x,\xi,t) = F_1^q(t), \quad \int_{-1}^{1} dx E_q(x,\xi,t) = F_2^q(t),$$

$$\int_{-1}^{1} dx \tilde{H}_q(x,\xi,t) = G_A^q(t), \quad \int_{-1}^{1} dx \tilde{E}_q(x,\xi,t) = G_P^q(t),$$

- Factorization: $Q^2 \rightarrow large$, $-u \rightarrow small$ ($-t \rightarrow large$)
- Systematically study backward DVCS & DVMP?
- Formalism: experimentalist friendly, directly linked to cross section (example later)

$$H^{\pi N}_{s.f.} = \{V^{\pi N}_{1,2}, A^{\pi N}_{1,2}, T^{\pi N}_{1,2,3,4}\} \quad \text{$\pi \leftrightarrow p TDAs}$$

$$H_{s.f.}^{\gamma N}=\left\{V_{1arepsilon}^{\gamma N},A_{1arepsilon}^{\gamma N},\,T_{1arepsilon,\,2arepsilon}^{\gamma N}
ight\}$$
 γ eop TDAs

GPD vs TDA Fact sheet 2

Cons:

- Ignores *t*-Channel σ peak
- No direct access to GPD, intermediate theory framework is needed, Compton Form Factor is required.

$$\mathcal{F} = \int_{-1}^{+1} dx \, F(x, \xi, t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right)$$
$$\tilde{\mathcal{F}} = \int_{-1}^{+1} dx \, \tilde{F}(x, \xi, t) \left(\frac{1}{\xi - x - i\epsilon} + \frac{1}{\xi + x - i\epsilon} \right)$$

$$F = H, E, \tilde{\mathcal{F}} = \tilde{\mathcal{H}}, \tilde{\mathcal{E}}, F = H, E, \tilde{F} = \tilde{H}, \tilde{E}.$$

Cons:

- Ignores u-Channel σ peak
- Require Empirical Nucleon Distribution Amplitude as input, example
 - KS: King and Sachrajda nucleon wave functions parameterization
 - COZ: Chernyak, Ogloblin and I. R. Zhitnitsky nucleon wave functions parameterization

TDA Meson Production Cross Section

• Unpolarized exclusive meson production cross section for π^0 :

$$\frac{d^{2}\sigma_{T}}{d\Omega_{\pi}} = |\mathcal{C}^{2}| \frac{1}{Q^{6}} \frac{\Lambda(s, m^{2}, M^{2})}{128 \pi^{2} s(s - M^{2})} \frac{1 + \xi}{\xi} (|\mathcal{I}|^{2}) - \frac{\Delta_{T}^{2}}{M^{2}} |\mathcal{I}'|^{2})$$

$$\mathcal{I} = \int \left(2 \sum_{\alpha=1}^{7} T_{\alpha} + \sum_{\alpha=8}^{14} T_{\alpha}\right)$$

$$\mathcal{I}' = \int \left(2 \sum_{\alpha=1}^{7} T_{\alpha}' + \sum_{\alpha=8}^{14} T_{\alpha}'\right)$$

First expansion is shown as an example

Red dashed boxes: TDAs

Blue dashed boxes: Nucleon DAs

Green box: Transition Form Factor (extracted from the *u***-slope)**

u-Channel production is in its infant form

E12-20-007: Backward-angle π^0 (PAC 48)

First dedicated *u*-channel electroproduction study above the resonance region: ${}^{1}H(e,e'p)\pi^{0}$

- Q^2 coverage: $2.0 < Q^2 < 6.25 \text{ GeV}^2$
- x=0.36
- $u \text{ coverage: } 0 < -u' < 0.5 \text{ GeV}^2$

Objective:

- Study soft-hard transition
- Validating TDA

My Previous talk:

u-Channel studies at EIC

7.4 Understanding Hadronization

There is great potential also in studying **new particle production mechanisms** such as exclusive backward *u*-channel production. Given its high luminosity the EIC may be able to discover fundamental QCD particle production processes with low cross sections such as via hard (perturbative) C-odd three gluon exchange.

- As postdoctoral fellow at JLab EIC Center: developed Backward $\pi^{\, heta}$ program for EIC
 - Offers synergy to other planned data set
 - Feasibility studies included as part of the EIC
 Yellow report (published last week)

u-Channel Meson Production Setup

EIC and EicC Complementarity

ECCE vs ATHENA Beamline Components

Enhanced acceptance and resolution with B0 calorimeter

Enhanced acceptance and resolution with B0 calorimeter

Calorimeter performance see presentation from Sasha Bylinkin: https://jleic-docdb.jlab.org/cgi-bin/private/ShowDocument?docid=616

Resolution

DVCS measurement requires (rejecting π^0):

- Energy cuts: $\pi^0 \rightarrow \gamma(\gamma)$, the detected γ will give
- position cuts: complinarity of the $oldsymbol{\pi}^0 {
 ightarrow} \gamma \gamma$

Prime region to measure DVCS

Question: How long would it take to measure u-channel DVCS?

Transition distribution Amplitude (TDA) Representation of DVCS (B. Pire, L. Szymanowski, K. Semenov-Tian-Shansky in 2002)

A subset u-Channel DVCS mechanism based on JLab data

u-Channel Vector Meson Dominance (VMD) Model

A illustration of a real photon emitted in the u-Channel Kinematics through Vector Meson Dominance Model (VDM) (B. Pire, L. Szymanowski, K. Semenov-Tian-Shansky in 2020)

Question: How long would it take to measure u-channel DVCS?

Theory predicts a consercative cross section estimate at JLab kinematics and beyond at x range of 0.1< x 0.3

Prediction by K.
Semenov-Tan-Shansky, B. Pire, Lech

Question: How long would it take to measure u-channel DVCS?

Kinematics coverage for u-Channel π^0 electroproduction. Coverage for the DVCS is similar. z-axis represents the expected number of events with 10 fb⁻¹ integrated luminosity for π^0 , where DVCS cross section is expected to be 10^2 less.

JLab kinematics and extension (x ~ 0.1 - 0.3): data driven model conservatively predicts sub 5% (statistical uncertainty) measurement (1% $Q^2 = 3 \text{ GeV}^2$) with 10 fb⁻¹. (see previous page for estimation)

EIC kinematics at x < 0.1: no data driven model prediction, exploring into unknown territory, 1/10 of the t-Channel cross section is a reasonable starting point. Alternatively, one could assume DVCS cross section is 10^2 smaller than the π^0 .

BH is highly suppressed

Summary and next step forward

- Fine tune the generator
- Complete DVCS and π full simulation

